If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2+25z-30=0
a = 5; b = 25; c = -30;
Δ = b2-4ac
Δ = 252-4·5·(-30)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-35}{2*5}=\frac{-60}{10} =-6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+35}{2*5}=\frac{10}{10} =1 $
| 115+66+20x+23x+7=360 | | 0.5x+22=0.3x-36.8 | | 3(x–10)=3x–30 | | 25-(2c=4)=2(c=3)=c | | 10x+24=2x+12 | | -6-v=10 | | y=-3+2.5 | | Z+46=2y | | 3-5y=-37y | | 5(3x+9)-2x=15 | | -4(x+5)+7=5x+50 | | 725=v+195 | | 14x-12=-6x+28 | | g5+18=25 | | -15d=-240 | | 11x-9+2x+x=-199 | | 8+2x-10=12x+7-8x+11 | | 836=22t | | -x-8+10x=64 | | 11=q | | -8x+-7=x | | c-154=185 | | 38=9x+2= | | 1,764=21p+300 | | 1/4x=31 | | 2x+14+3x=44 | | -6(x-4)=-12 | | 10x+3-2x-9=2(4x-3) | | 7a+4+3a+2a-4=180 | | 6y+12=48-4y | | 12x+4=78 | | O.3(x+7)=3(x-1) |